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Abstract—Rotor is important element in a variety of industrial 
applications. An unexpected failure of the rotor system may cause 
significant economic losses and accident. For this reason, fault 
detection in the rotor system has been the subject of intensive 
research. Vibration signal analysis has been widely used in the fault 
detection of rotating machinery. This paper develops the finite 
element model of the rotating shaft with multi-cracks. The analytical 
method for the calculation of the natural frequencies of such a rotor 
system is investigated and the modeling of the open cracks element is 
discussed. The natural frequency of the experiment system is 
measured for various cases of positions and depths of the cracks by 
using Picoscope. By comparing both the theoretical and experiment 
results of the natural frequencies, the accuracy of the developed FEM 
of the rotating shaft with multi-cracks is clarified. 
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1. INTRODUCTION 

All metal members that are subjected to vibration and cyclic 
stresses in more or less localized areas, cracks may occur. 
Since cracks cannot be easily seen with the naked eyes, the 
non-destructive testing methods like ultrasonic testing, X-ray, 
etc. can be used to detect them. However, these methods are 
costly and time-consuming for complex or large structures. 
For this reason, the vibration-based structural health 
monitoring methods, especially those based on the change of 
modal parameters (frequencies, shape and damping), have 
been explored for detecting cracks. These vibration-based 
techniques have been applied to a variety of engineering 
structures, such as beams, trusses, rotors, etc. 

In the past most of the research work has been done on a 
structure with a single transverse surface crack. When more 
than one crack appears in a structure, the dynamic response 
becomes more complex depending upon the relative positions 
and depths of these cracks. For the first time, Dimaragonas et 
al. [1] suggested an analytical method for the computation of 
dynamic response of a cracked Euler-Bernoulli beam by 
modeling the cracked region as a local flexibility resulted from 
fracture mechanics. Christides et al. [2] developed a 
continuous theory for vibration of a uniform Euler-Bernoulli 
beam containing one or more pairs of symmetric cracks. A 
differential equation of motion and corresponding boundary 
conditions are given in this paper using the Hu-Washizu 

variational principle. Darpe et al. [3] detected that various 
combinations of position and depth can lead to the identical 
changes in the natural frequencies. Ostachowicz et al. [4] 
analysed the effect of positions and depths of two cracks on 
the natural frequency of cantilever beams. Shen et al. [5] have 
analysed a pair of symmetric cracks at mid-span and focused 
their attention on the effect of these cracks on the mode 
shapes. Ruotolo et al. [6] studied the effect of crack depth and 
location on the eigenfrequencies of a double cracked beam. 
Al-said [7] developed a mathematical model describing the 
lateral vibration of a stepped cracked beam carrying 
concentrated masses and obtained a global effect of cracks to 
the system. The advantage of the proposed algorithm is to 
identify the crack by monitoring a single natural frequency of 
the system. Ranjan et al. [8] studied experimentally the 
variation in vibration characteristics of multi cracked rotating 
shaft using piezoelectric sensor. And they observed from the 
numerical results that, there were appreciable changes in 
vibration characteristics of the rotating shaft with and without 
cracks which can be utilized for multi cracks identification of 
structures. Sekhar [9] carried out a parametric study of two 
transverse open cracks in a rotor and studied the effect of 
various crack parameters on the eigenfrequencies and stability 
speeds of rotors. He used finite element model of a rotor 
bearing system for flexural vibrations and carried out a study 
on two aligned open cracks. Dong et al. [10] introduced finite 
element (FE) model, which is based on a transfer matrix 
analysis and local flexibility theorem to obtained crack 
identification of a static (non-rotating) rotor with an open 
crack. Han et al. [11] the continuous wavelet transform of the 
measured wave signals was used to detect the damage 
location. In this method the magnetostrictive effect was 
employed for a non-contact measurement of stress waves in 
rotating shafts. Masoud et al. [12] suggest a mathematical 
model to study the effect of crack depth on the transverse 
vibration characteristics of a pre-stressed -fixed cracked beam. 
They studied the effect of interaction between the crack depth, 
and axial load on the beam natural frequencies. An 
experimental verification was carried out for the obtained 
theoretical results. Chati et al. [13] studied the dynamic 
characteristics of a cantilever beam having a transverse edge 
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crack by using modal analysis. In the field of non destructive 
evaluation (NDE), neural networks are a very useful tool for 
analyzing and filtering different variety of measured quantities 
and signals. Kang et al. [14] used a neural network approach 
to determining fatigue crack configuration. Etemad et al. [15] 
proposed indirect method of diagnosing a shaft using neural 
networks. They obtained natural frequencies by means of a 
finite element method. Then those Numerical data were used 
to train three two-layer feed-forward back-propagation neural 
networks. He Y. et al. [16] proposed a genetic algorithm based 
method for shaft crack detection. Dharmaraju et al. [17] 
developed a general identification algorithm to estimate crack 
flexibility coefficients and crack depth based on the beam 
force–response information. They used an Euler–Bernoulli 
beam element in the finite element modeling, and the crack 
has been modeled by a local compliance matrix, which has 
four degrees of freedom. Zheng et al. [18] applied a finite 
element method to obtain the natural frequencies and mode 
shapes of a cracked beam. They obtained the flexibility matrix 
for cracked beam by adding the crack flexibility to the 
flexibility matrix of the intact beam element as an overall 
additional flexibility matrix instead of adding it as local 
flexibility matrix; using this derivation, they were able to 
predict the natural frequencies more accurately. 

In this paper, an applicable approach is proposed to estimate 
specification of rotor shaft cracks using theoretical analysis 
and experimental analysis. The approach evolved in this paper 
intimates location and depth of the open cracks in the rotor. 
The comparison results in both methodologies are written 
above are performed. The results of theoretical analysis and 
experimental analysis are compared. The test results show that 
the proposed FEM model is able to estimate the crack 
specifications with high accuracy. 

2. MATHEMATICAL MODELING 

It is assumed that the crack changes only the stiffness of the 
structure whereas the mass and damping coefficients remains 
unchanged. Cracks occurring in structures are responsible for 
local stiffness variations, which in consequence affect the 
mode shapes of the system. Following Fig. shows the cross-
section of the cracked shaft. 

                                                        ξ 

 R dw  

  a b                                           z      h 

 

η 

 
Fig. 1: The cross-section of the cracked shaft 

According to the fracture mechanics and the energy principle 
of Paris, the additional strain energy due to a crack is given by 
the following equations: 

U=∫J(A)dA    (1) 

where J (A) is strain energy density function with only 
bending deformation taken into consideration. It is expressed 
as: 

J(A)=  1/E' KI
2  (2) 

where E'= E /(1−ν ) , ν is the Poisson ratio and K I is the stress 
intensity factors corresponding to the bending moment M in 
plane crossing the axis of the beam. 

The local flexibility due to the crack in the ξ -axis direction 

Cξ=
𝜕𝜕²𝑈𝑈
𝜕𝜕𝜕𝜕 ²

=1−𝑣𝑣²
𝐸𝐸 ∫ 𝜕𝜕𝜕𝜕𝑏𝑏

−𝑏𝑏 ∫ 32
𝜋𝜋²𝑅𝑅

𝑏𝑏
0 (R2- 

η2)πzF2
2(z/h)dz  (3) 

The similar expression of local flexibility in the η -axis 
direction can be written as 

Cη=
𝜕𝜕²𝑈𝑈
𝜕𝜕𝜕𝜕 ²

=1−𝑣𝑣²
𝐸𝐸 ∫ 𝜕𝜕𝜕𝜕𝑏𝑏

−𝑏𝑏 ∫ 32
𝜋𝜋²𝑅𝑅

𝑏𝑏
0 η2πzF1

2(z/h)dz  (4) 

Now, we can get the local flexibility matrix C1 of the element 
with a crack 

C1=   �
𝐶𝐶𝜉𝜉     0

0 𝐶𝐶η    
� (5) 

Here, the coupled flexibility is neglected since it is much less 
than the element in the main diagonal of the C1. Let C0 is the 
flexibility matrix of uncracked shaft element.  

The total flexibility matrix C is expressed as: 

C=C0+C1    (6)                                                                                                                                   

Thus, the total stiffness matrix of the crack element is written 
as 

Kc =TCTT    (7)                                                                                           

where T is the transformation matrix and given by 

T=    (8) 
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Assembling all the element mass, damping and stiffness 
matrices of the rotor system in stationary coordinate system, 
the equation of motion in stationary coordinate is 

 (9) 

where, M, C, K and F are total mass, damping, stiffness and 
external exciting force matrices of rotor system respectively. Z 
is the displacement of the element node. 

For the rotor system considered here, each beam element has 
two nodes and each node has two degrees of freedom 
representing transverse and deflecting displacements in the 
corresponding cross-section. Here, only the mode shape in the 
ξ-axis direction is discussed by assuming the rotor system is 
rigid supported at the bearing position.  

The mode shape can be obtained by solving the homogeneous 
part of (9) without considering the effect of the damping.  

  (10)       

Substituting   zi=Aisin(𝝎𝝎it+φi

(-𝝎𝝎

) we get 

i
2M+K)Ai

Where 𝝎𝝎

=0    (11)                                                                                               

i and Ai

3. DATA ACQUISITION 

 is the i-th nature frequency and eigenvector 
(mode shape). 

The shaft studied in this paper was a homogeneous shaft with 
perfectly round surface sections and had a length of 20.0cm 
and a diameter of 2.5cm. Regarding the shaft specifications, 
mild steel, with a density of 7800 kg/m3 was considered. The 
Young's modulus for this shaft was 2.1x1011N/m2

ANSYS is very powerful finite element software capable of 
providing natural frequencies of a shaft with given crack’s 
specifications including location, depth, and width. Center of 
the shaft is chosen as the reference point of the shaft and all 
the crack locations are specified with respect to this point. Fig. 
5 shows the first modal frequency of the cracked shaft in 
ANSYS. The maximum selected crack width is 0.2mm which 
is considered a severe crack. Overall, 7 sets of numerical 
input-output data of different cracks are obtained. Table 1 
presents 7 samples of the obtained numerical data. 

and the 
Poisson’s ratio was 0.3. Shaft was rotating at a speed of 
1400rpm. 

 

Fig. 2: ANSYS model 

Table 1: Theoretical Data Obtained Using Finite Element Method 

Crack 
No. 

Depth of crack 
(in mm) 

First Crack 
Location 
(in mm) 

Second Crack 
Location 
(in mm) 

ω 
in 
Hz 

1 
2 

1.0 
2.0 

-10 
-10 

10 
20 

70.74 
57.47 

3 2.5 -15 25 57.70 
4 3.5 -20 30 57.38 
5 4.0 -25 35 58.86 
6 4.5 -35 45 57.49 
7 5.0 -30 40 53.43 

 
For the experiment the cracks were assumed to be 
perpendicular to the shaft main axis. Cracks were done by 
wire electrical discharge machining (WEDM) using Ø 
0.25mm brass wire. For this type of cracks, two important 
properties were defined: locations and depth. It is also 
necessary that the cracks be tangent to a vertical plate. 
Usually, a shaft was connected to a motor through a flexible 
coupling, and it was supported by radial bearings at both ends. 
It was possible to calculate the natural frequencies of a shaft 
using analysis of the data gathered by some vibration sensors 
such as piezoelectric sensors connected to the set of bearings. 
Fig. 3 shows a perpendicular crack on a shaft installed with a 
piezoelectric sensor. 

 

Fig. 3: Photograph of shaft installed with a piezoelectric sensor 
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A piezoelectric sensor generates an electric signal when the 
outer surface of the sensor is compressed. Such a mechanical 
input-electrical output sensor is used in many applications to 
detect the vibration signals and extract the natural frequencies. 
After the vibration signal has been obtained by the 
Piezoelectric Sensor, it will be gathered by a data acquisition 
system for signal processing. The vibration signal in the time 
domain will be transferred into the frequency spectrum by 
applying the Fast Fourier Transform (FFT). Then the power 
spectrum – a measurement of the power at various frequencies 
– will be obtained by multiplying the FFT results by their 
conjugates. Fig. 3 and Fig. 4 show the power spectrum for the 
vibration signal. It is interesting to note that frequency at the 
peak decreases with cracks. In case of no crack the frequency 
is 135Hz and in case of double it is 74.74Hz. 

 

 
Fig. 4: Frequency spectrum of shaft without-crack 

 

 
Fig. 5: Frequency spectrum of shaft with multi-cracks 

 
Table 2: Experimental Data Obtained Using PicoScope  

 

Crack 
No. 

Depth of crack 
(in mm) 

First Crack 
Location 
(in mm) 

Second Crack 
Location 
(in mm) 

ω 
in 
Hz 

1 
2 

1.0 
2.0 

-10 
-10 

10 
20 

74.74 
59.70 

3 2.5 -15 25 60.72 
4 3.5 -20 30 60.38 
5 4.0 -25 35 61.86 
6 4.5 -35 45 59.49 
7 5.0 -30 40 55.43 

 

4. RESULT AND DISCUSSIONS 

The results from theoretical analysis and experimental analysis 
are shown in the Table 1 and Table 2. It can be notice that the 
variation in the frequency is more visible with depth of the 
cracks. The crack depth is a measure to diagnose the 
severeness of the crack. Therefore, the mentioned precision 
regarding the crack depth estimation is of great importance. 
For a shaft with deeper crack(s) more care should be provided 
to prevent damage and total break of the shaft.  

5. CONCLUSION 

In this paper an indirect non-destructive approach is proposed 
for rotor cracks detection. A finite element model is used for 
flexural vibration analysis of a rotor with two open cracks and 
its experiment verification has been investigated, and the 
following points were clarified:- 

(i) The concise, accurate and general-purpose oriented model 
of the open cracks in a rotor system has been developed. 

(ii) The analytical calculation method of the natural 
frequency of rotor system with open cracks has been 
deduced. 

(iii)The natural frequency has been calculated for various 
cases of position and depth of cracks by using the 
developed open cracks model, and it has been confirmed 
experimentally. The analysis and experiment clarify the 
validation of the developed open cracks models. 
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